) Luger, G.F. (1994). Forward. In Expert Systems: Design and Development,
John Durkin. New York: Macmillan.

____ Foreword

Artificial Intelligence may be defined as: The study of the mechanisms underlying
intelligent behavior through the construction and evaluation of artifacts that enact
those mechanisms.

Astificial Intelligence is both a science and an engineering discipline. It is a
science in that it seeks explication of the nature of knowledge, understanding,
and skill. AI also offers a paradigm for testing our understanding of and interaction
with the world. We design experiments and run them. The results of our experi-
ments demonstrate our understanding of the world; our revised experiments show
our improved comprehension, Artificial Intelligence is engineering in that its
practice requires appropriate, flexible, and timely solutions: the design and build-
ing of programs and applications that work.

Al has now successfully delivered to the user community many successful
design and programming tools; these include algorithms for machine learning,
planning and robotics, inciuding the building of closed loop control systems
for manufacturing processes. Above ail else the Arttificial Intelligence research
comununity has developed and delivered expert system or “‘knowledge-based’’
programming techniques and applications.

Expert systems encode a human expert’s knowledge for a computer in such
a fashion that this expert program can be run and the inowiedge applied where
needed. The expert program is built from explicit pieces of knowledge extracted
from the human expert. It is modular and can be easily changed when humans
discover new approaches to the problem solving or when the needs of the problem
solver ¢hange. This expert program can explain itself, by describing why some
line of questioning is relevant as well as presenting a proof for how it arrived
at some conclusion. The program is also heuristic in that it seldom relies on
exhaustive search methods but rather considers the data and knowledge of the
application much as the human expert does: with confidences, rules of thumb,
and encoded experience of the probiem application.

John Durkin's book offers one of the best guides available for the design
and building of expert systems. John introduces knowledge-based programming
techniques as practical, useful, application-oriented tools. His approach presents
expert systems as a natural evolution of Al concepts, thus integrating Al theory
with the practice and delivery of quality software.

Figure 1 and some text taken with permission from Artficial Intelligence: Striectures and Strategies
for Complex Problem Soiving, George E. Luger and William A. Stubblefield, Benjamin Cummings,
1993.

iv FOREWORD

Durkin’s approach to expert system software is founded on the use of a
““conceptmal model”’ to drive his software development. Figure 1 shows how
this conceptual model stands between experience in the world and the creation
of code for a computer. A good part of Durkin’s book describes Al data structures
and shows how they are important conceptual tools for problem solving,

To build an expert system we address a domain, of knowledge and skill in an
application area; this knowledge is often vague or only partially articulated. The
knowledge engineer must translate this into a formal language. This process
brings with it several important problems: ‘

1. Human skill is practice based. As Aristotle points out in his Ethics, *“what
we have to leamn to do, we learn by doing.’’ Skills such as those possessed
by medical doctors are Iearned as much through years of internship and
residency, with their constant focus on patients, as they are in anatomy or
physiology lectures, where emphasis is on experiment and theory. Delivery
of medical care is to a great extent practice driven, And after years of
performance, these skills are highly integrated and often not explicitly
retrievable.

2. Human expertise often takes the form of knowing how to cope in a situation
rather than knowing whar a rational characterization of the situation might
be, of developing skilled performance mechanisms rather than a fundamen-
tal understanding of what these mechanisms are. An obvious example of
this is riding a unicycle: the successful rider is not, in real time, conscicusly
solving multiple sets of simultaneous differential equations 1o keep in

Conceptual Modet

Knowledge Acquisition w_Programming the KBS

IF 20x)ag(X, Y}
then (Y}

W XYy |
then s{X,Y)

IF (Y)as(X, Y}
then ((X,Y)

Expertise Implemented System

FIGURE 1

FOREWORD b

balance; rather she is using an intuitive combination of feelings of **grav-
ity,” “‘momentum,”’ and ‘“‘inertia’’ to form a usable control procedure. In
fact, we find a huge gap often exists between human expertise in an
application area and any precise accounting of this skill.

3. We often think of knowledge acquisition as gaining factual knowledge of
an objective reality, the so-called “‘real world.”” As both theory and practice
have shown, there is no immediate access to some “‘real’”’ world; rather
human expertise represents an individual’s or community’s model of the
world. Such models are as influenced by convention, social processes, and
hidden agendas as they are by empirical methodologies.

4, Expertise changes. Not only do human experts gain new knowledge, but also
existing knowledge may be subjectto radical reformmulation, as evidenced by
ongoing coniroversies in both scientific and nonscientific fields.

Consequently, knowledge engineering is difficult and should be viewed as
spanning the life cycle of any expert system. To simplify this task, it is useful
to have, as in Figure 1, a conceprual or mental model that lies between human
expertise and the implemented program. The conceptual model is the knowledge
engineer’s evolving conception of the domain knowledge. Although this is
undoubtedly different from the domain expert’s, it is this model that actually
underlies the construction of the formal knowledge base.

Because of the complexity and multiple sources of ambiguity in the problem,
we should not take this intermediate stage for granted. Expert system builders
should decument and make public their asswmptions about the domain through
common software engineering methodologies. A knowledge based system should
inelude a requirements document; however, because of the constraints of explor-
atory programming, expert system requirements should be treated as co-evolving
with the prototype. Data dictionaries, graphic representations of state spaces, and
comments in the code itself are all part of this medel. By publicizing these design
decisions, we reduce errors in both the implementation and the maintenance of
the knowiedge base,

Knowledge engineers should save recordings of interviews with domain
experts. Often, as the kmowledge engineer’s understanding of the domain grows,
she may form a new interpretation or discover new information in one of these
sessions. The recordings, along with documentation of the interpretation given
them, play a valuable role in reviewing design decisions and testing prototypes.

Finally, this model setrves an intermediate role in the formalization of knowl-
edge. The choice of a representation language exerts a strong influence on a
knowledge engineer’s model of the domain. The model is usually based on one
of the AT representation languages, either the predicate calculus, or frames,
objects, or hybrid designs.

The conceptual model is not formal or directly executable on a computer. It
is an intermediate design construct, a template to begin to constrain and codify
human skill. It can, for instance, if the knowledge engineer nses a predicate
calculus model, begin as a number of simple networks representing the expert’s

-

Vi FOREWORD

states of reasoning through typical problem-solving situations, Only after further
refinement does this network become explicit if . . . then . . . rules.

Questions often worked through in the context of a conceptual model include:
Is the problem solving deterministic or search based? Is it data-driven, perhaps
with 2 generate-and-test flavor? Is problem solving goal-driven, based on a small
set of hypotheses about situations? Are there stages of reasoning? Is it exact or
fuzzy? Is it nonmonotonic, with the need of a truth maintenance systerm?

The eventual users’ needs should also be addressed in the context of the
concepiual model: What are their expectations of the eventual program? Where
is their level of expertise: novice, intermediate, or expert? What levels of explana-
tion are appropriate? What interface best serves their needs?

To accomplish this concept based development process requires:

» Knowledge acquisition, understanding its stages and techniques,

+ Tool selection, understanding the many powerful tools available to expert
system designers and builders,

» Building the system with steps and cross checks, often employing the explor-
atory programming methodology,

+ Verification and Validation,

+ Documentation, and

- Maintenance.

Durkin’s book presents excellent suggestions and guidance for performing these
tasks,

George F. Luger
Albuguerque

